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Abstract
We explore the possibility of using a simplified version of the multicomponent
hypernetted-chain (HNC) integral equation for charged colloidal suspensions.
The method presented here is an extension of a previous one (Anta et al 2003
J. Phys.: Condens. Matter 15 S3491) for systems with added salt. Within this
theoretical scheme, colloid–colloid, colloid–microion and microion–microion
correlations are treated with different levels of approximation. Thus, we
describe microion–microion correlations in the random phase approximation
(RPA) whereas colloid–microion and colloid–colloid correlations are solved in
the HNC approximation. This strategy reduces the numerical demands of the
full HNC equation and makes it possible to get a solution at thermodynamic
states not included in the original solution region. In addition, it is found that
we can extend even further the range of applicability of the theory by solving the
colloid–microion part of the theory for a fixed colloid–colloid radial distribution
function. This is obtained in turn from the solution of the one-component HNC
equation for the effective DLVO potential. Using these strategies we obtain a
semi-quantitative description of the colloidal system as well as an indication
of a salt-driven phase transition at low ionic strengths. This phase transition
is associated to charge inversion, as inspection of the colloid–microion density
profiles reveals. However, the theory fails to reproduce reliable effective-pair
potentials in the vicinity of the non-solution region. The applicability and
usefulness of integral equation theories when applied to charged colloids is
discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Colloidal suspensions are multi-component systems characterized by large asymmetries in size
and charge [1, 2]. They possess a very rich phase behaviour and exhibit a variety of structures
and microscopic orderings which, in many cases, are analogous to those observed in molecular
systems [3]. This analogy has encouraged theorists to extend methods which are successful
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in the description of simple and molecular fluids to the explanation of a number of colloidal
phenomena.

Due to this asymmetry in size and charge characteristic of a colloidal system, the simplest
way of formulating a theoretical description of its structure and interactions is by coarse-
graining. By coarse-graining we mean to eliminate the degrees of freedom of the smaller
and less charged particles so that the mixture is treated as an effective one-component system
(OCS) of large particles. The well-known Derjaguin–Landau–Verwey–Overbeek (DLVO)
theory and effective potential [4], widely used nowadays in colloidal science, is nothing else
but a particularly successful example of a coarse-graining procedure. The DLVO effective
potential was obtained originally from the linearized Poisson–Boltzmann (PB) equation but it
can also be derived in the context of density functional theory (DFT) [5, 6] and linear response
theory [7, 8]. All these approaches are based on a simplified description of the colloid–microion
correlation and the structure of the ‘ionic atmosphere’ around a spherical colloid. They make it
possible to formulate an approximate free energy functional from which an effective interaction
is extracted by integrating out the degrees of freedom of the ions. Together with the correct
derivation of the DLVO effective pair potential, these theories show the importance of one-
body terms in the free energy expansion. For instance, these one-body terms are found to
contribute to the thermodynamic behaviour of the system and predict phase separation at low
ionic strengths [5].

Linearized PB, mean-field DFT and LRT have the following common features.

(1) They treat microion–microion correlations in the simplest approximation (mean-field or
random phase approximation).

(2) Colloid–microion correlations are solved at a linearized level, that is, they ignore higher-
order terms in a certain free energy expansion.

(3) Colloid–colloid correlations are not considered.

Extensions over these linearized approaches have also been explored [8–10]. In general, these
extensions are reduced to improve on point (2) above. Thus, it has been seen that linear PB
theory leads to a spurious phase separation which is not found in the full solution of the PB
equation [9]. Also, the introduction of non-linear terms in the free energy functional implies
that the effective potential is no longer pairwise additive [8]. As regards points (1) and (3),
some improvements have been accomplished recently. Microion–microion correlations can
be implicitly considered via an effective potential [11]. PB theory can also be solved at ‘finite
colloidal density’ to obtain effective colloidal charges [12]. In summary, the partial success of
these linearized theories demonstrates that it might not be necessary to include a full description
of all correlations to obtain useful results. We will make use of this fact below.

As an alternative to the aforementioned theories, simulation techniques provide an ‘exact’
description of all correlations involved in the colloidal mixture [13–18]. Simulations of
charged colloidal systems have shown that many phenomena occurring in these systems such
as like-charge effective attraction [16], overcharging [15], phase behaviour departing from
simple DLVO theory [14], and reentrant transitions [17], arise from many-body electrostatic
interactions only. However, direct application of simulation techniques is cumbersome due to
the strong asymmetry characteristic of these systems. This numerical limitation has hindered
an adequate consideration of the influence of colloid–colloid correlations and the effect of
added electrolyte, especially in the regimes of low ionic strength and high colloidal charges.
Still, simulations remain as the method of reference to test the accuracy of other theories.

Another group of methods coming from the field of classical fluids are integral equation
theories [19]. These theories, when applied to colloidal systems [20, 21], have the following
advantages.
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(1) They include colloid–colloid, colloid–microion and microion–microion correlations
explicitly and more precisely than ‘simple’ approaches (PB, DFT, etc).

(2) They are numerically less demanding than simulations.
(3) They allow for an unambiguous definition of a pairwise additive effective potential

between colloids. In other words, they provide a convenient way of doing coarse-
graining [22].

On the other hand, they suffer from the following drawbacks.

(1) They are algebraically very complex.
(2) They exhibit a frustrating non-solution region which does not necessarily coincide with

regimes of physical instability [23, 24].

In this paper we explore the capability of integral equation theories to provide useful
results in colloidal systems in spite of these drawbacks. With this intention we have proposed
in previous papers [25, 26] a simplified integral equation based on the solution of the
multi-component Ornstein–Zernike equation [3] coupled with three different closures. In
this approach the complexity and accuracy of the closure used depends on the correlation
to be described. Thus microion–microion correlations are treated in the simplest random
phase approximation (RPA). In turn, the colloid–microion correlations are obtained from the
solution of the hypernetted-chain (HNC) equation for a charged spherical colloid surrounded by
counterions. Finally, the effective one-component system (OCS) is described by the HNC or the
reference-HNC (RHNC) approximation. Since the definition of the OCS, via an effective pair
potential, depends on the colloid–microion structure, the whole procedure should be iterated
until self-consistency. This strategy, which we call ‘coarse-grained’ HNC theory (CGHNC),
proves to be accurate enough to reproduce exact colloid–colloid and colloid–ion correlation
functions in salt-free colloidal suspensions [25]. In addition, it broadens the solution region
of the integral equation without losing significant accuracy in the description of the effective
one-component system and the ‘ionic’ atmosphere around the spherical colloid [26].

The aim of this paper is twofold. First we present an extension of the CGHNC theory
to the case of added electrolyte and test its performance against simulation and experimental
results. Second we discuss the capability of integral equation theories to provide useful results
in charged colloidal suspensions. In this regard we will see that, although the CGHNC reduces
the numerical and algebraic complexity of the multi-component Ornstein–Zernike equation,
this integral equation remains unsolvable for a large number of cases. This serious shortcoming
places us against the dilemma of disregarding these kinds of theory because they do not provide
a solution for all cases in spite of the fact that they give quick and accurate results in the rest of
the cases. In order to make progress on this issue, we discuss the nature of the non-solution line
in charged-colloidal suspensions by looking at the effective potential in the proximity of the
non-solution boundary. Furthermore we explore the alternative of obtaining colloid–microion
radial distribution functions and colloid–colloid effective potentials without requiring a full
self-consistent solution of the integral equation.

The outline of the paper is as follows. In section 2 we briefly present the derivation of the
CGHNC theory for suspensions with added salt and the numerical strategy used to implement
it. In section 3 we test the performance of the theory by comparing with simulations and
experimental data. In section 4 we make use of the theory to provide an explanation of a
‘reentrant’ phase transition recently reported in the literature. The origin of the non-solution
region of the integral equation and the efficiency of our formalism is discussed in section 5.
Finally, in section 6, the main conclusions of this work are summarized.
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2. The CGHNC theory

In the present work we consider a system of ionized colloidal particles with positive charge zc in
the presence of their corresponding negatively charged counterions of charge zi. The number
density of the colloids is ρc, whereas the density of the counterions is given by the charge
electroneutrality condition; hence ρi = (zc/zi)ρc. In addition we consider a salt electrolyte
of concentration ρs which contributes to the system with cations of charge z+ and anions of
charge z−. The electroneutrality condition also requires that z+ρ+ = z−ρ−, where ρ+ and ρ−
are, respectively, the density of cations and anions coming from the added electrolyte. Our
mixture is, therefore, a four-component system. In the following, we will refer to both the
counterions and salt ions as ‘microions’.

All species in the system interact via pair potentials of the type

umn(r) = uSR
mn(r) +

zm zne2

4πεr
, (m, n = c, i, +,−) (1)

where uSR is a short-range interaction1 (for instance, a hard-core repulsion term) and ε is the
permittivity of the solvent, which is taken as a continuum.

The colloidal system so defined poses a formidable problem. We have to solve for ten
different correlations, involving microions with microions, colloid with microions and colloids
with colloids. In the following we will see how we can take advantage of the asymmetry of
the mixture to reduce the complexity of the problem and facilitate its numerical solution. In
order to do this we proceed as follows.

Step 1: many-body problem

In the integral equation formalism, many-body interactions are treated by means of the
Ornstein–Zernike (OZ) equations [3]. For a multicomponent mixture they can be written
as

hmn(r) = cmn(r) +
M∑

l=1

ρl

∫
drl cml(r)hln(r) (2)

where M is the total number of components in the mixture and hmn(r) and cmn(r) are,
respectively, the total correlation function (TCF) and direct correlation function (DCF) between
species m and n. The total correlation functions are related to the Ashcroft–Langreth partial
structure factors Smn(k)s via [27]

Smn(k) = δmn + (ρmρn)
1/2

∫

V
dr eik·rhmn(r) = δmn + (ρmρn)

1/2hmn(k), (3)

with the hmn(k)s being the Fourier transforms of the total correlation functions (TCFs).
The OZ equations are exact relations between all TCFs, which describe the pair structure

of the system. They can be regarded as the definition of the DCFs. It can be also shown that
the DCFs are related to the second-order functional derivatives of the excess free energy of the
system [3, 28, 29].

Taking the Fourier transform of equation (2) and using matrix notation we obtain

H(k) = C(k) + C(k) · H(k) (4)

where H and C are M × M matrices whose elements are defined by

[H(k)]mn = (ρmρn)
1/2hmn(k);

[C(k)]mn = (ρmρn)
1/2cmn(k).

(5)

1 In this paper we have considered hard-core interactions only. Nonetheless the theory and its corresponding numerical
program are also straightforwardly applicable to soft interactions.
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Combining equations (3) and (4) we can express the OZ equations as a matrix relationship
between partial structure factors and DCFs

S(k) = [I − C(k)]−1 (6)

where I is the identity matrix. In a one-component fluid, the OZ equations (6) reduce to the
familiar form

S(k) = 1 − ρh(k) = 1

1 − ρc(k)
. (7)

Step 2: coarse-graining

A central point in this formalism is to reduce the problem to an effective one-component system
(OCS). To do this we take [22, 28]

S(k) = Scc(k) (8)

where S(k) is the structure factor of the OCS. Thus, the OCS is defined as the fluid whose
characteristic pair structure is identical to the colloid–colloid pair structure of the original
four-component system. Bearing in mind the OCS result (7) and

Scc(k) = cofactor[1 − ρcccc(k)]

Det[I − C(k)]
(9)

we find the following relationship between the DCF of the one-component system and the
DCFs of the mixture

c(k) = ccc(k) − Rs(k)/ρs

cofactor[1 − ρcccc(k)]
(10)

where Rs(k) is the result of multiplying the second, third and fourth elements of the first row of
matrix I − C(k) by their respective cofactors and summing up the results. For the simpler case
of a colloid–counterion mixture (no added salt) it can be shown that this expression reduces
to [25]

c(k) = ccc(k) +
ρi[cci(k)]2

1 − ρicii(k)
. (11)

Step 3: effective potential

According to Henderson’s theorem [30], there is a unique pair potential that fully determines
the pair correlation function of a fluid. Therefore, the OCS defined by equation (8) should
lead to the definition of an effective pair potential between colloids. By using this strategy we
make sure that the effective potential so constructed is pairwise by definition.

In order to find this we identify the pair distribution functions g(r) = h(r) + 1 of the OCS
and the original mixture as well as their corresponding potentials of mean-force w(r)

g(r) = exp[−βw(r)] = gcc(r) = exp[−βwcc(r)] (12)

where β = 1/kBT . The potential of mean-force can be related in turn to the DCFs, hence

−βueff(r) + h(r) − C(r) − B(r) = −βucc(r) + hcc(r) − Ccc(r) − Bcc(r) (13)

where ueff(r) is the effective potential and the Bmns are the so-called bridge functions. The
bridge functions are related to the ‘higher-than-two’ functional derivatives of the excess free
energy functional with respect to the density profiles. Neglecting their contribution leads to
the well-known HNC approximation. Otherwise, by including them in equation (13), we start
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from an approach that is formally exact. We next use equation (10) to arrive at the following
expression for the effective colloid–colloid pair potential

βueff(r) = βucc(r) + FFT−1

[
Rs(k)/ρc

cofactor[1 − ρcccc(k)]

]
+ [Bcc(r) − B(r)]

= βu′
eff(r) + [Bcc(r) − B(r)] (14)

where FFT−1 stands for inverse Fourier transformation.
Equation (14) shows that the effective interaction ueff(r) between colloidal particles is

a sum of three contributions: (1) direct colloid–colloid interaction, (2) microion-mediated
interaction which depends on the colloid–microion and microion–microion DCFs and (3) a term
that arises from the difference between the bridge function of the OCS and the colloid–colloid
bridge function of the mixture. A convenient but somehow uncontrolled approximation is to
assume that both bridge functions are essentially the same. We have seen elsewhere [26] that
this is not necessarily true, especially in the vicinity of a non-solution boundary. Alternatively,
we can assume that both bridge functions are zero, which is equivalent to treating all correlations
in the HNC approximation. In any case, the simplest choice is to ignore this contribution. Thus,
we can take ueff = u′

eff in equation (14) and the effective potential between colloids can be
computed in terms of all the DCFs of the mixture only. We will see that this simplification
works reasonably well in some cases although it may lead to ‘unphysical’ effective potentials
which are responsible for non-solution instabilities.

Step 4: microion–microion correlations

The expression introduced above for the effective potential depends on the microion–microion
correlations via the DCFs. We make use of the random phase approximation (RPA) to compute
these. Hence

Cmn(r) = −βumn(r) (m, n = i, +,−). (15)

With this approximation, we make the microion–microion correlations independent or
uncoupled from the rest of the correlations in the mixture. In other words, we assume
that colloids move in a sea of microions whose characteristic direct correlation functions
behave as if the colloids were absent. This is an analogous approximation to the jellium
approximation employed in liquid metals [28]. We have previously [25, 26] demonstrated
that this simplification reduces the numerical complexity of the integral equation without
significantly reducing its accuracy, at least for monovalent counterions.

A short-range term can be included, in principle, in equation (15). Nevertheless, we have
observed that for very asymmetric systems this term does not significantly improve the results
for the colloid–colloid and colloid–microion correlation functions.

Step 5: colloid–microion correlations

We treat this interaction in the HNC approximation. This means that the colloid–microion
mean-force potential is obtained through

wcm(r) = βucm(r) − hcm(r) + Ccm(r) (m = i, +,−) (16)

with

gcm(r) = hcm(r) + 1 = exp[−βwcm(r)] (m = i, +,−). (17)

Working in the HNC approximation, the description of the colloid–microion correlation turns
out to be improved with respect to linearized theories in two aspects. On the one hand we
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include the effect of colloid–colloid correlations via the Ornstein–Zernike equations (4). The
importance of including this contribution is especially evident when we compare the theoretical
colloid–ion distributions with simulation results at finite colloidal density [25]. On the other
hand, the use of the HNC closure implies the addition of non-linear terms in the description
of the ionic profiles around the colloidal particle [8].

As we will see below, the use of the HNC approximation for the colloid–microion
correlations leads to instabilities in certain situations. In order to surmount this drawback we
have tested the Zerah–Hansen closure [20] for attractive colloid–microion interactions only2.
Nevertheless, this alternative does not produce in principle physically consistent results. A
more detailed discussion of this fact in connection with the non-solution boundary will be
given in section 5.

As mentioned, equations (16), (17) are solved for the three colloid–microion TCFs in
conjunction with the OZ equations (4). This means that we incorporate into the calculation
the effect of microion–microion correlations (via the simple approximation (15)) as well as the
colloid–colloid correlations. Due to this latter contribution, a certain colloid–colloid structure
should be provided as input to solve the colloid–microion structure. We will see that this can be
done self-consistently or, alternatively, we can carry out a single calculation for a particularly
simple colloid–colloid distribution function.

Step 6: solution of the effective colloid–colloid problem

Once we have solved the colloid–microion correlation, and obtained the corresponding DCFs,
the effective potential between colloids is completely determined via equations (14) and (15).
In the OCS, this potential induces a colloid–colloid pair structure that is obtained using the
main-force potential

w(r) = βu′
eff(r) − h(r) + C(r) + Bcc(r), (18)

where u′
eff(r) is defined in equation (14) and B0

cc is the colloid–colloid bridge function. In this
work we have assumed that B0

cc = 0 (HNC approximation). The extension of the theory for
large packing fractions of colloids would require introducing hard-sphere bridge functions as
has been done elsewhere [25].

General strategy

Both steps 5 and 6 involve the solution of an integral equation for only one type of correlations,
keeping the rest fixed. In view of this, we iterate over steps 5 and 6 until self-consistency is
achieved. The result should be equivalent to the solution of the full multi-component OZ
equations with RPA, and HNC closures for the microion–microion, colloid–microion and
colloid–colloid correlations respectively. The result of the calculation will be self-consistent
colloid–colloid pair distribution functions and effective potentials. The calculations were done
numerically using fast-Fourier transform methods with 4096–16 386 points and a grid interval
of 0.01–0.5 nm. The Ng and Broyles strategies [31] were employed to accelerate convergence.
Fully converged results can be obtained in a few minutes on a standard PC in most cases. For
highly coupled systems it can be needed to start the calculation at a higher temperature or at a
lower colloidal charge. These calculations serve as first estimates to perform the calculation
at the desired temperature or colloidal charge.

2 The reason for using the ZH closure for attractive interactions only lies in the fact that we wan to keep the number
of fitting parameters as low as possible. As discussed below, the origin of the non-solution instabilities is related to a
poor description of the colloid–counterion correlation.
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As we will see, full self-consistency cannot be accomplished in certain cases, especially
in the low-salt limit and also at low colloidal concentrations and high colloidal charges. This
means that the integral equation defined above does not have a solution for these situations.
Nevertheless we can obtain a fairly accurate estimation of the effective potential and colloid–
microion distributions if we solve the colloid–microion problem (step 5) for a fixed colloid–
colloid structure. A convenient choice for this is to use the colloid–colloid g(r) obtained from
the solution of the one-component HNC equation for the DLVO effective pair potential. Even
if this solution does not correspond to the full self-consistent solution of the CGHNC integral
equation it can be helpful to explain the behaviour of these systems.

3. Colloid–colloid correlations and effective potentials

In order to test unambiguously the accuracy of the CGHNC equations and the approximations
implicit in them, we need to compare with simulation results for the same colloidal models.
To our knowledge, there is just one simulation study of charged colloidal mixtures with
added electrolyte in which colloid–colloid pair distribution functions are reported [17]. An
analogous system was studied by Angelescu and Linse [18], although their work focused on the
computation of the mean-force potential between two charged colloids in the presence of salt.
Both works were oriented to elucidate some experimental results which showed the existence
of salt-driven reentrant transitions in aqueous mixtures of sodium dodecyl sulfate and Al(NO)3.

In this work we have performed CGHNC calculations for hard-core spherical colloids
of charge Zc = 60 in the presence of variable amounts of 1:zc electrolyte, with zc being the
charge of the electrolyte counterions. The size of the particles is 4 and 0.4 nm for colloids and
microions respectively. Following Lobaskin and Qamhieh [17], we have considered three
choices for the counterion charge: zc = 1, 3, 5. Results for the colloid–colloid radial
distribution function can be found in figures 1 and 2 for the monovalent and the pentavalent
cases respectively.

Unfortunately, the full CGHNC integral equation cannot be solved for most of the cases
reported by Lobaskin and Qamhieh [17] except at moderate salt concentrations. In the
monovalent case the theoretical result is virtually exact, whereas in the pentavalent case
the CGHNC overestimates by far the height of the main peak. As we will see in the next
two sections, this mismatch and the lack of solutions is due to the proximity of a salt-
driven phase separation. In this connection, the use of the Zerah–Hansen closure [20] for
the colloid–counterion correlation makes it possible to solve the integral equation at lower salt
concentrations, although this improvement should be attributed to a crude description of the
colloid–counterion correlation near the colloidal surface.

We must note that the CGHNC equation can be solved with reasonable accuracy for
charge and size asymmetries beyond the limit of the standard HNC equation. As mentioned
in the introduction, this feature was already made evident previously for colloid–counterion
mixtures [26]. As regards suspensions with added electrolyte, it has been reported very recently
that the full HNC equation cannot be solved for charge asymmetries larger than 450 for 1:1
electrolyte of concentration 0.001 M [32]. By means of the CGHNC procedure we can obtain
results for systems with charges up to 800–1200 and salt concentrations of 10−1–10−6 M,
depending on the system. For the most difficult case studied by Lobaskin and Qamhieh [17]
(low colloidal packing fraction and low salinity) the improvement is more modest: for instance
for the case studied in figure 1 the full HNC can be solved up to a concentration of 0.075 M.
The CGHNC permits extending the calculation limit up to 0.066 M.

Results for the colloid–microion radial distribution functions can be found in figure 3.
For the concentrations for which the full CGHNC integral equation cannot be solved we have
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Figure 1. Colloid–colloid radial distribution functions for aqueous suspensions of hard-core
colloids of charge 60 electrons in the presence of colloid counterions and variable amounts of
1:1 added salt. The diameter of the colloids and the microions is 4 and 0.4 nm respectively. The
Monte Carlo (MC) results were taken from [17]. The solid lines stand for CGHNC predictions.
The dashed line corresponds to the use of the ZH closure for colloid–counterion correlation only.
See text for details.
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Figure 2. Same as figure 1 but for 1:5 added salt (salt counterions are pentavalent).

plotted the results obtained with the simplified procedure mentioned in section 2. According
to this the colloid–counterion part of the theory is solved for a fixed colloid–colloid radial
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Figure 3. Colloid–monovalent counterion (upper panel), colloid–coion (medium panel) and
colloid–trivalent counterion (lower panel) radial distribution functions for hard-core colloidal
suspensions in the presence of 1:3 added salt. Solid lines correspond to the full solution of
the CGHNC equations, whereas the dashed lines represent a partial solution in which only the
colloid–microion structure is solved (see text for details).

distribution function. This is extracted in turn from the solution of the one-component HNC
integral equation for the DLVO effective potential at the same salt concentration.

The curves displayed in figure 3 reproduce reasonably well the Monte Carlo (MC) results
of [18] for the colloid–counterion correlation. For instance, at a salt concentration of 0.025 M,
contact values of 9.3 and 628 are obtained for the colloid–monovalent counterion and colloid–
trivalent counterion respectively. The MC estimations are ∼9 and ∼500 respectively, which
shows that the HNC closure together with the RPA approximation for microion–microion
correlations tends to overestimate the accumulation of trivalent ions in the proximity of the
colloidal surface. On the other hand the prediction of the colloid–coion correlation is not so
accurate. The CGHNC results do not exhibit the same accumulation of coions at intermediate
distances that can be clearly observed in the MC curves of [18]. This is a consequence of using
a simple approximation for microion–microion correlations within the CGHNC approach.
This suggests that a better approximation than RPA would be needed to reproduce the system
behaviour correctly.

In order to shed light on the performance of the RPA approximation we have looked at
the counterion–counterion radial distribution functions. It must be noted that, in the context
of the CGHNC formalism, the ion–ion correlations are not obtained explicitly. However,
it is possible to make use of the Ornstein–Zernike relations (4) to extract the counterion–
counterion radial distribution function once the full self-consistent solution is found. Results
for a 60:z (z = 1, 2, 3) hard-core salt-free system are presented in figure 4 along with
MC data [33]. In this figure it can be observed that the agreement between theory and
simulation is fairly qualitative. The mismatch gets worse as we move from monovalent to
trivalent counterions. For this latter case the CGHNC function gives a maximum value of
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Figure 4. Counterion–counterion radial distribution functions extracted from the CGHNC
equations (solid lines) for colloid–counterion hard-core mixtures in the absence of salt. The charge
of the colloids is 60 electrons and the counterions have, from top to bottom, charges of 1, 2 and 3
respectively. MC results for the same systems extracted from [33] are also included in the graph.

1.8, whereas the simulation result (outside the graph) is 6.4. These results suggest that the
RPA approximation only works well for monovalent counterions. In the multivalent case
microion–microion correlations are not captured correctly and this explains why the integral
equation fails at situations in which microion–microion correlations play a crucial role, that
is, condensation of counterions at the colloidal surface and charge inversion [34]. This fact
also accounts for the fact that the non-solution boundaries appear when the Debye length is
not short enough to cancel the microion–microion correlations, that is, low colloidal packing
fractions and low salt concentrations.

In figure 5 we report results for the colloid–colloid effective potentials which are obtained
in the context of the CGHNC formalism. It must be pointed out that the potentials shown in this
figure do not represent true effective interactions. They correspond to the function denoted by
u′

eff(r) in equation (14) and do not include the bridge function contribution. We have seen in our
previous paper [26] that the effective potential approximated in this way develops an attractive
minimum in the vicinity of the non-solution region. Whether this minimum is spurious or not
is difficult to tell. As can be seen in figure 5, the CGHNC ‘effective’ potential at very low ionic
strengths exhibits a very deep minimum at short distances. This is not observed in the MC
results of [16], where it was found that the effective potentials are repulsive at all distances
for monovalent counterions. In fact the CGHNC ‘effective’ potential for the salt-free case
does not compare very well with the MC effective interaction [16] and it shows Yukawa-like
behaviour at long distances only. However, at moderate salt concentrations the minimum of
the CGHNC effective potential is located at the same distance (around 4.5 nm) at which it
appears in the mean-force potentials obtained from MC simulations with added salt for the
same system [18]. Due to the artificial enhancement of this minimum as the salt concentration
is lowered, effective potentials extracted from this integral equation are not reliable in the
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Figure 5. Colloid–colloid effective potentials for hard-core colloidal suspensions in the presence of
1:3 added salt as obtained from the solution of the CGHNC equations. The colloidal and microion
parameters are the same as those considered in figures 1 and 2. Solid lines correspond to the full
solution of the CGHNC equations whereas the dashed lines represent a partial solution in which
only the colloid–microion structure is solved (see text for details). MC results from [16] are also
shown in the graph.

vicinity of the non-solution region. This is also common to other integral equation theories
unless a good approximation for the bridge functions occurring in equation (14) is provided.

In spite of this drawback, we have also compared the CGHNC effective potentials with
experimental measurements for this quantity. In order to do this we have chosen the work by
Crocker and Grier [35]. Results for the effective potential at the same conditions studied by
these authors are presented in figure 6. It must be noted that in this case there are two unknown
parameters that should be included in the description of the experimental data. These are
the colloidal charge and the concentration of the background electrolyte which, at highly
deionized conditions, cannot be determined with accuracy. Crocker and Grier proposed a
background salt concentration of around 10−6 M. Playing with this parameter, together with
the colloidal charge, we can fit the experimental potential. In figure 5 we can see that the
CGHNC fits the experiment for a larger charge than that obtained when using the DLVO
potential. Both potentials are essentially identical at long distances but they differ at short
distances, the CGHNC potential being less repulsive in this region. We should bear in mind
that the DLVO potential arises from a linearized solution of the Poisson–Boltzmann equation
and this linearization is not accurate near the colloidal surface, especially for large charges.
This explains why a lower charge is needed to fit the experimental results with the DLVO
potential.

The difference between DLVO and CGHNC becomes more perceptible if we increase the
colloidal packing fraction. Crocker and Grier obtained their results in the very dilute regime
for which, in deionized conditions, the DLVO theory performs well. However, it is interesting
to see how the effective potential becomes increasingly less repulsive as we move towards
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Figure 6. Effective potentials from CGHNC and DLVO theories for the same experimental system
considered by Crocker and Grier [35]. Results for two different colloid packing fractions (φ) are
shown in the figure.

more concentrated systems. This effect has already been observed previously by other authors
using a more sophisticated integral equation formalism [20].

4. Salt-driven phase separation

In previous experimental and simulation studies a salt-driven phase separation has been
reported for aqueous mixtures of micelles and an electrolyte containing multivalent
counterions [17, 18]. According to these studies the suspensions are stable at deionized
conditions as well as at very high concentrations of salt. Nevertheless, in the intermediate
region the system coagulates.

We have explored this transition using the CGHNC formalism. The system is the same
as that described in the previous section (figures 1 and 2) and studied by Lobaskin and
Qamhieh [17] and Angelescu and Linse [18]. The results that illustrate the predictions of
the theory for this system can be found in figures 5–8. We find that the numerical solution
of the integral equation diverges if the added salt concentration is sufficiently low. This
feature happens for 1:1, 1:3 and 1:5 electrolytes, although the salt concentration for which the
instability appears in the 1:1 case is much lower than in the other cases. This is not the only
difference between electrolytes with monovalent and multivalent counterions. If we look at
the long-wavelength limit of the colloid–colloid structure factor (figure 7) we observe that the
lack of solution of the integral equation is associated to a divergence of this magnitude when
we have multivalent counterions. This divergence does not occur in the 1:1 case. This suggests
that the suspension phase separates in the presence of multivalent ions only. These results are
consistent with the findings of Lobaskin and Qamhieh [17].

These authors explain this phase separation by making use of the charge-reversal concept:
at low ionic strengths the effective potential is purely repulsive. When we increase the
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concentration of salt, counterions accumulate in the vicinity on the colloidal surface and reduce
the effective charge. If the amount of salt is high enough, and it is in certain proportion to
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the colloidal concentration, the system ceases to be stable and coagulates. Adding more salt
makes the effective charge change sign, and this originates an effective interaction which is
again basically repulsive, causing the system to redissolve. In order to see if the CGHNC
theory is capable of reproducing this charge-reversal effect, we have looked at the colloid–
microion radial distribution functions and calculated the total accumulated charge around the
colloid as a function of the distance. The results are shown in figure 8. We can see that at low
ionic strengths the accumulated charge is monotonic and shows no change of sign. However,
at intermediate and large salt concentrations the same function undergoes a rapid increase at
short distances. This would indicate that the colloid bears an apparent charge of opposite sign.
This is only strictly true at high salt concentrations. At intermediate concentrations the change
reversal is partially compensated by an oscillation of the total accumulated charge at around
5 nm. This explains why, in this case, the colloids feel a net attraction which causes the system
to coagulate.

At this point it must be stressed that, as already mentioned, the charge-reversal effect is a
consequence of microion–microion correlations at the colloidal surface [34] and that these are
treated in a very crude manner within the present theory. Although similar approximations like
the HNC/MSA are capable of reproducing overcharging in a semiquantitative manner [36], it
must be borne in mind that the disagreement between theory and simulation is due principally
to a poor description of these correlations.

The ‘reentrant’ transition can also be intuitively perceived when we look at the ‘effective’
potentials of figure 5. We see that at high salt concentrations the CGHNC interaction is purely
repulsive. This feature makes the suspension stable against coagulation. If we decrease the
ionic strength of the system an attractive well appears in the CGHNC effective potential.
As already mentioned, this minimum is located at the same distance (around 4.5 nm) as
the mean-force potentials of Angelescu and Linse [18]. The presence of this minimum at
salt concentrations close to the divergence of S(k) (cf figure 7) explain the coagulation of the
system at intermediate ionic strengths. If we keep decreasing the salt concentration we find that
the CGHNC effective potential develops a repulsive barrier at longer distances. At sufficiently
low ionic strength this barrier can have a height of around 2–3 kbT and this explains why the
suspension becomes stable again as we approach the salt-free limit.

Concerning the origin of the attractive features of the effective potential, figure 3 shows
that there is a strong accumulation of counterions near the colloidal surface. This accumulation
becomes more and more intense as we decrease the concentration of salt. Moreover, the contact
values for trivalent counterions are obviously larger than for monovalent ones. In addition the
correlation function of the former decays more rapidly than the latter. This fact indicates
that the trivalent counterions replace the monovalent ones in the screening of the colloidal
charge as we decrease the concentration of salt. The presence of these trivalent counterions in
the colloidal screening cloud leads to effective attractions at intermediate salt concentrations
due to the interaction between the colloids and the screening clouds of their neighbours.
When we move to larger salt concentrations this attraction becomes less important than the
repulsion between the clouds themselves. The fact that the attraction, and hence the non-
solution boundaries, appear at higher salt concentrations than those observed in the simulation
is, again, a consequence of a too simplistic treatment of microion–microion correlations.

5. Discussion and origin of the non-solution regions

In the previous sections we have shown that the CGHNC formalism produces results and
conclusions which are consistent with experiments and MC simulations. This suggests that
it can be judicious to introduce certain approximations into the Ornstein–Zernike formalism
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that take advantage of the asymmetry of the mixture. The idea is to reduce the complexity of
the numerical procedure in order to broaden the region of solution. Nevertheless, the integral
equation employed here remains unsolvable in many cases of physical interest, as comparison
with simulations and experiments demonstrated. The use of an incomplete solution (keeping the
colloid–colloid correlation fixed) permitted us to obtain at least the colloid–microion structure
and approximate effective potentials. But still we can wonder about the reasons why the
numerical solution of the integral equation does not converge at certain situations.

We must say that in most cases the non-solution boundaries are associated to the proximity
of a phase instability. This statement should be taken with caution because it has been
demonstrated that the non-solution line of the HNC integral equation does not have the
characteristics of a spinodal [24]. Thus, we cannot use the non-solution properties of the
integral equation to locate the precise onset of the phase separation but we can at least predict
its existence.

In previous works [25, 26] we discussed the nature of the non-solution boundary of the
CGHNC integral equation. We showed that the equation becomes increasingly more difficult
to solve the larger is the colloidal charge and the smaller the colloidal size. We also found
that in the proximity of a non-solution boundary the effective potential becomes attractive.
This feature seems to be connected to a gas–liquid transition. A similar finding is obtained
in the context of this work when we monitor the behaviour of the system as we decrease
the concentration of salt. This phenomenon can be clearly seen in figure 7, for instance.
Nevertheless, as already mentioned, the occurrence of attractions in the effective potential can
be spurious.

In figure 9 we can see that as we approach the non-solution boundary of the CGHNC
integral equation, the effective potential develops a minimum at short distances. This provokes
an instability that makes the equation diverge at lower salt concentrations. As we saw in
section 4, this instability seems to correspond to a real phase transition [18] when there are
multivalent ions present in the system, as monitoring of the isothermal compressibility (figure 7)
reveals.

In section 4 we also saw that the HNC closure tends to overestimate the local concentrations
of counterions close to the colloidal surface. Bearing this in mind we have also considered
the Zerah–Hansen (ZH) closure [37] for attractive colloid–microion correlations only (see
footnote 2). This means that we evaluate the colloid–counterion total correlation function by
means of

hcm(r) = exp( f (r)[−βucm(r) + hcm(r) − Ccm(r)]) − 1

f (r)
(19)

with f (r) = 1 − exp(−αr) and α being an adjustable parameter. Equation (19) interpolates
between the MSA closure at short range and the HNC at long range. As we can see in figure 9,
the use of the ZH closure eliminates the minimum in the effective potential and makes the
interaction purely repulsive. As a consequence, the ZH closure permits us to obtain a solution
at lower salt concentrations (see figure 1). The good performance of the ZH closure in this
respect has already been pointed out [20, 38].

We should wonder about the reasons for such a behaviour. As mentioned, the ZH closure
for attractive interactions involves using the MSA approximation at short distances and the
HNC at longer ones. It is known that the MSA approximation underestimates the colloid–
counterion pair distribution function close to contact for highly charged systems [21]. This
feature compensates the tendency of the HNC to overestimate this value (see above). Therefore
the good behaviour of the ZH closure should be considered as the result of a convenient
cancellation of errors and, therefore, not due to clear physical reasons. As a matter of fact,
in the context of the CGHNC formalism, it was not possible to fix the α parameter contained
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in function f (r) in equation (19) by requiring thermodynamic consistency. In contrast, a
more sophisticated approach in which all correlations are treated in the ZH approximation [20]
permits us indeed to optimize all the αs using several optimization criteria. This means that
we need a very cumbersome integral equation to obtain accurate results in these systems. A
simplified procedure like the CGHNC can be helpful only if we use α as an empirical fitting
parameter.

In any case, a general feature of the present theory is its failure when the Debye screening
constant becomes too low (low colloidal packing fractions and/or low salinities). As already
mentioned, this is a consequence of the poor description of the microion–microion correlations,
which become important when the electrostatic coupling is very large. Thus the theory turns
out to be imprecise or unsolvable when phenomena like overcharging and like-charge attraction
appear in the system.

6. Conclusions

In this paper we have extended the CGHNC theory to charged colloidal suspensions with
added salt. This implies introducing the following approximations in the solution of the
multicomponent Ornstein–Zernike equation.

(1) All microion–microion correlations are evaluated in the RPA approximation and
considered independent from colloid–colloid and colloid–microion correlations.

(2) Colloid–microion correlations are evaluated in the HNC approximation (colloid–microion
bridge functions ignored).
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(3) Colloid–colloid correlations are solved in the HNC approximation for an effective pair
potential which is obtained assuming that colloid–colloid bridge functions are negligible.

(4) Additionally the colloid–microion HNC integral equation can be solved for a fixed colloid–
colloid structure. This can be extracted from the solution of the one-component HNC
equation for the DLVO effective potential.

The success of this integral equation procedure is limited. The solution region is extended
but at the price of losing accuracy in the prediction of the colloid–colloid and colloid–microion
radial distribution functions, especially for multivalent microions. The effective potential also
exhibits a spurious minimum when the non-solution region is approached. This feature is
related to strong accumulation of counterions in the vicinity of the colloid surface (which
causes the ionic ‘atmospheres’ to attract each other) and poor description of microion–microion
correlations. This drawback can be surmounted if we use the ZH closure for attractive colloid–
microion correlations only, although this requires introducing an adjustable parameter.

In spite of this limited performance, the results obtained here provide a semi-quantitative
description of the colloidal system and a means to elucidate the occurrence of salt-driven
transition suspensions with multivalent added salt. The CGHNC results reveal divergences of
the long-wavelength limit of the colloid–colloid structure factor and charge reversal connected
to the appearance of attractive minima in the effective potential.

The results obtained here show also that a more precise description of the system requires a
better evaluation of the microion–microion correlations, especially for multivalent microions,
and the introduction of suitable bridge functions. The ‘coarse-graining’ approximation implicit
to the CGHNC procedure should be used with caution in these strongly interacting systems.
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